The Geodetic Hull Number is Hard for Chordal Graphs
نویسندگان
چکیده
منابع مشابه
The Geodetic Hull Number is Hard for Chordal Graphs
We show the hardness of the geodetic hull number for chordal graphs.
متن کاملthe geodetic domination number for the product of graphs
a subset $s$ of vertices in a graph $g$ is called a geodetic set if every vertex not in $s$ lies on a shortest path between two vertices from $s$. a subset $d$ of vertices in $g$ is called dominating set if every vertex not in $d$ has at least one neighbor in $d$. a geodetic dominating set $s$ is both a geodetic and a dominating set. the geodetic (domination, geodetic domination) number...
متن کاملCrossing Number Is Hard for Cubic Graphs
It was proved by [Garey and Johnson, 1983] that computing the crossing number of a graph is an NP -hard problem. Their reduction, however, used parallel edges and vertices of very high degrees. We prove here that it is NP -hard to determine the crossing number of a simple cubic graph. In particular, this implies that the minor-monotone version of crossing number is also NP -hard, which has been...
متن کاملOn the Steiner, geodetic and hull numbers of graphs
Given a graph G and a subset W ⊆ V (G), a Steiner W -tree is a tree of minimum order that contains all of W . Let S(W ) denote the set of all vertices in G that lie on some Steiner W -tree; we call S(W ) the Steiner interval of W . If S(W ) = V (G), then we call W a Steiner set of G. The minimum order of a Steiner set of G is called the Steiner number of G. Given two vertices u, v in G, a short...
متن کاملOn the geodetic number of median graphs
A set of vertices S in a graph is called geodetic if every vertex of this graph lies on some shortest path between two vertices from S. In this paper, minimum geodetic sets in median graphs are studied with respect to the operation of peripheral expansion. Along the way geodetic sets of median prisms are considered and median graphs that possess a geodetic set of size two are characterized. © 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Discrete Mathematics
سال: 2017
ISSN: 1571-0653
DOI: 10.1016/j.endm.2017.10.050